All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Representations of monotone Boolean functions by linear programs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00511322" target="_blank" >RIV/67985840:_____/19:00511322 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1145/3337787" target="_blank" >http://dx.doi.org/10.1145/3337787</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3337787" target="_blank" >10.1145/3337787</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Representations of monotone Boolean functions by linear programs

  • Original language description

    We introduce the notion of monotone linear programming circuits (MLP circuits), a model of computation for partial Boolean functions. Using this model, we prove the following results. (1) MLP circuits are superpolynomially stronger than monotone Boolean circuits. (2) MLP circuits are exponentially stronger than monotone span programs over the reals. (3) MLP circuits can be used to provide monotone feasibility interpolation theorems for Lovász-Schrijver proof systems and for mixed Lovász-Schrijver proof systems. (4) The Lovász-Schrijver proof system cannot be polynomially simulated by the cutting planes proof system. Finally, we establish connections between the problem of proving lower bounds for the size of MLP circuits and the field of extension complexity of polytopes.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACM Transactions on Computation Theory

  • ISSN

    1942-3454

  • e-ISSN

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    31

  • Pages from-to

    22

  • UT code for WoS article

    000496750000004

  • EID of the result in the Scopus database

    2-s2.0-85075615893