All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Representations of monotone Boolean functions by linear programs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00477105" target="_blank" >RIV/67985840:_____/17:00477105 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.4230/LIPIcs.CCC.2017.3" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.CCC.2017.3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.CCC.2017.3" target="_blank" >10.4230/LIPIcs.CCC.2017.3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Representations of monotone Boolean functions by linear programs

  • Original language description

    We introduce the notion of monotone linear-programming circuits (MLP circuits), a model of computation for partial Boolean functions. Using this model, we prove the following results. 1. MLP circuits are superpolynomially stronger than monotone Boolean circuits. 2. MLP circuits are exponentially stronger than monotone span programs. 3. MLP circuits can be used to provide monotone feasibility interpolation theorems for Lovasz-Schrijver proof systems, and for mixed Lovasz-Schrijver proof systems. 4. The Lovasz-Schrijver proof system cannot be polynomially simulated by the cutting planes proof system. This is the first result showing a separation between these two proof systems. Finally, we discuss connections between the problem of proving lower bounds on the size of MLPs and the problem of proving lower bounds on extended formulations of polytopes.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    32nd Computational Complexity Conference (CCC 2017)

  • ISBN

    978-3-95977-040-8

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

  • Publisher name

    Schloss Dagstuhl, Leibniz-Zentrum für Informatik

  • Place of publication

    Dagstuhl

  • Event location

    Riga

  • Event date

    Jul 6, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article