Representations of monotone Boolean functions by linear programs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00477105" target="_blank" >RIV/67985840:_____/17:00477105 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4230/LIPIcs.CCC.2017.3" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.CCC.2017.3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.CCC.2017.3" target="_blank" >10.4230/LIPIcs.CCC.2017.3</a>
Alternative languages
Result language
angličtina
Original language name
Representations of monotone Boolean functions by linear programs
Original language description
We introduce the notion of monotone linear-programming circuits (MLP circuits), a model of computation for partial Boolean functions. Using this model, we prove the following results. 1. MLP circuits are superpolynomially stronger than monotone Boolean circuits. 2. MLP circuits are exponentially stronger than monotone span programs. 3. MLP circuits can be used to provide monotone feasibility interpolation theorems for Lovasz-Schrijver proof systems, and for mixed Lovasz-Schrijver proof systems. 4. The Lovasz-Schrijver proof system cannot be polynomially simulated by the cutting planes proof system. This is the first result showing a separation between these two proof systems. Finally, we discuss connections between the problem of proving lower bounds on the size of MLPs and the problem of proving lower bounds on extended formulations of polytopes.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
32nd Computational Complexity Conference (CCC 2017)
ISBN
978-3-95977-040-8
ISSN
1868-8969
e-ISSN
—
Number of pages
14
Pages from-to
—
Publisher name
Schloss Dagstuhl, Leibniz-Zentrum für Informatik
Place of publication
Dagstuhl
Event location
Riga
Event date
Jul 6, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—