All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On ϵ-sensitive monotone computations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00531552" target="_blank" >RIV/67985840:_____/20:00531552 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00037-020-00196-6" target="_blank" >https://doi.org/10.1007/s00037-020-00196-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00037-020-00196-6" target="_blank" >10.1007/s00037-020-00196-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On ϵ-sensitive monotone computations

  • Original language description

    We show that strong-enough lower bounds on monotone arithmetic circuits or the nonnegative rank of a matrix imply unconditional lower bounds in arithmetic or Boolean circuit complexity. First, we show that if a polynomial f∈ R[x1, ⋯ , xn] of degree d has an arithmetic circuit of size s then (x1+⋯+xn+1)d+ϵf has a monotone arithmetic circuit of size O(sd2+ nlog n) , for some ϵ> 0. Second, if f: { 0 , 1 } n→ { 0 , 1 } is a Boolean function, we associate with f an explicit exponential-size matrix M(f) such that the Boolean circuit size of f is at least Ω(min ϵ>(rk +(M(f) - ϵJ)) - 2 n) , where J is the all-ones matrix and rk + denotes the nonnegative rank of a matrix. In fact, the quantity min ϵ>(rk +(M(f) - ϵJ)) characterizes how hard is it to distinguish rejecting and accepting inputs of f by means of a linear program. Finally, we introduce a proof system resembling the monotone calculus of Atserias et al. (J Comput Syst Sci 65:626–638, 2002) and show that similar ϵ-sensitive lower bounds on monotone arithmetic circuits imply lower bounds on proof-size in the system.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GX19-27871X" target="_blank" >GX19-27871X: Efficient approximation algorithms and circuit complexity</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Computational Complexity

  • ISSN

    1016-3328

  • e-ISSN

  • Volume of the periodical

    29

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    38

  • Pages from-to

    6

  • UT code for WoS article

    000552200600001

  • EID of the result in the Scopus database

    2-s2.0-85088507263