All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Quasidiagonal traces and crossed products

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00518431" target="_blank" >RIV/67985840:_____/19:00518431 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1512/iumj.2019.68.7759" target="_blank" >http://dx.doi.org/10.1512/iumj.2019.68.7759</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1512/iumj.2019.68.7759" target="_blank" >10.1512/iumj.2019.68.7759</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Quasidiagonal traces and crossed products

  • Original language description

    Let A be a simple, exact, separable, unital C∗algebra, and let α: G → Aut(A) be an action of a finite group G with the weak tracial Rokhlin property. We show that every trace on A *α G is quasidiagonal provided that all traces on A are quasidiagonal. As an application, we study the behavior of finite decomposition rank under taking crossed products by finite group actions with the weak tracial Rokhlin property. Moreover, we discuss the stability of the property that all traces are quasidiagonal under taking crossed products of finite group actions with finite Rokhlin dimension with commuting towers.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Indiana University Mathematics Journal

  • ISSN

    0022-2518

  • e-ISSN

  • Volume of the periodical

    68

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    1579-1590

  • UT code for WoS article

    000505613300007

  • EID of the result in the Scopus database

    2-s2.0-85076238625