Quasidiagonal traces and crossed products
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00518431" target="_blank" >RIV/67985840:_____/19:00518431 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1512/iumj.2019.68.7759" target="_blank" >http://dx.doi.org/10.1512/iumj.2019.68.7759</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1512/iumj.2019.68.7759" target="_blank" >10.1512/iumj.2019.68.7759</a>
Alternative languages
Result language
angličtina
Original language name
Quasidiagonal traces and crossed products
Original language description
Let A be a simple, exact, separable, unital C∗algebra, and let α: G → Aut(A) be an action of a finite group G with the weak tracial Rokhlin property. We show that every trace on A *α G is quasidiagonal provided that all traces on A are quasidiagonal. As an application, we study the behavior of finite decomposition rank under taking crossed products by finite group actions with the weak tracial Rokhlin property. Moreover, we discuss the stability of the property that all traces are quasidiagonal under taking crossed products of finite group actions with finite Rokhlin dimension with commuting towers.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Indiana University Mathematics Journal
ISSN
0022-2518
e-ISSN
—
Volume of the periodical
68
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
1579-1590
UT code for WoS article
000505613300007
EID of the result in the Scopus database
2-s2.0-85076238625