All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The radius of comparison of the crossed product by a weakly tracially strictly approximately inner action

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00582728" target="_blank" >RIV/67985840:_____/23:00582728 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4064/sm211002-5-4" target="_blank" >https://doi.org/10.4064/sm211002-5-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4064/sm211002-5-4" target="_blank" >10.4064/sm211002-5-4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The radius of comparison of the crossed product by a weakly tracially strictly approximately inner action

  • Original language description

    Let G be a finite group, let A be an infinite-dimensional stably finite simple unital C∗-algebra, and let α: G → Aut(A) be a weakly tracially strictly approximately inner action of G on A. Then the radius of comparison satisfies rc(A) ≤ rc(C∗(G, A, α)), and if C∗(G, A, α) is simple, then rc(A) ≤ rc(C∗(G, A, α)) ≤ rc(Aα). Further, the inclusion of A in C∗(G, A, α) induces an isomorphism from the purely positive part of the Cuntz semigroup Cu(A) to its image in Cu(C∗(G, A, α)). If α is strictly approximately inner, then in fact Cu(A) → Cu(C∗(G, A, α)) is an ordered semigroup isomorphism onto its range. Also, for every finite group G and for every η ∈ (0, 1/card(G)), we construct a simple separable unital AH algebra A with stable rank one and an approximately representable but pointwise outer action α: G → Aut(A) such that rc(A) = rc(C∗(G, A, α)) = η.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ20-17488Y" target="_blank" >GJ20-17488Y: Applications of C*-algebra classification: dynamics, geometry, and their quantum analogues</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Studia mathematica

  • ISSN

    0039-3223

  • e-ISSN

    1730-6337

  • Volume of the periodical

    271

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    PL - POLAND

  • Number of pages

    45

  • Pages from-to

    241-285

  • UT code for WoS article

    001124170500001

  • EID of the result in the Scopus database

    2-s2.0-85171259623