Smooth duality and co-contra correspondence
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00522353" target="_blank" >RIV/67985840:_____/20:00522353 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/11104/0306861" target="_blank" >http://hdl.handle.net/11104/0306861</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Smooth duality and co-contra correspondence
Original language description
The aim of this paper is to explain how to get a complex of smooth representations out of the dual vector space to a smooth representation of a p-adic Lie group, in natural characteristic. The construction does not depend on any finiteness/admissibility assumptions. Imposing such an assumption, one obtains an involutive duality on the derived category of complexes of smooth modules with admissible cohomology modules. The paper can serve as an introduction to the results about representations of locally profinite groups contained in the author's monograph on semi-infinite homological algebra [see: L. Positselski: Homological Algebra of Semimodules and Semicontramodules: Semi-infinite Homological Algebra of Associative Algebraic Structures, Monografie Matematyczne IMPAN 70, Birkhäuser, Basel (2010)].
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Lie Theory
ISSN
0949-5932
e-ISSN
—
Volume of the periodical
30
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
60
Pages from-to
85-144
UT code for WoS article
000590620700007
EID of the result in the Scopus database
2-s2.0-85090685202