On the influence of diffusion stabilization in Oldroyd-B fluid flow simulations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00523867" target="_blank" >RIV/67985840:_____/20:00523867 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21220/20:00343044
Result on the web
<a href="https://doi.org/10.14311/TPFM.2020.023" target="_blank" >https://doi.org/10.14311/TPFM.2020.023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/TPFM.2020.023" target="_blank" >10.14311/TPFM.2020.023</a>
Alternative languages
Result language
angličtina
Original language name
On the influence of diffusion stabilization in Oldroyd-B fluid flow simulations
Original language description
This work presents some numerical tests of finite element solution of incompressible Oldroyd-B fluid flows. The effect of numerical stabilization using artificial stress diffusion is investigated in detail. The limits of Weissenberg number We for which it is possible to obtain the numerical solution were studied depending on the Reynolds number Re and the diffusion parameter. Series of numerical tests were performed for steady two-dimensional Oldroyd-B fluid flow in corrugated channel (tube). The numerical results clearly proved the advantage (higher attainable We) of stabilized numerical method over the classical formulation without the artificial stress diffusion.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-04243S" target="_blank" >GA19-04243S: Partial differential equations in mechanics and thermodynamics of fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of Topical Problems of Fluid Mechanics 2020
ISBN
978-80-87012-74-1
ISSN
2336-5781
e-ISSN
—
Number of pages
8
Pages from-to
176-183
Publisher name
Institute of Thermomechanics of the Czech Academy of Sciences
Place of publication
Praha
Event location
Prague
Event date
Feb 19, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—