Temporal artificial stress diffusion for numerical simulations of Oldroyd-B fluid flow
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00552865" target="_blank" >RIV/67985840:_____/22:00552865 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21220/22:00356600
Result on the web
<a href="https://doi.org/10.3390/math10030404" target="_blank" >https://doi.org/10.3390/math10030404</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math10030404" target="_blank" >10.3390/math10030404</a>
Alternative languages
Result language
angličtina
Original language name
Temporal artificial stress diffusion for numerical simulations of Oldroyd-B fluid flow
Original language description
This paper presents a numerical evaluation of two different artificial stress diffusion techniques for the stabilization of viscoelastic Oldroyd-B fluid flows at high Weissenberg numbers. The standard artificial diffusion in the form of a Laplacian of the extra stress tensor is compared with a newly proposed approach using a discrete time derivative of the Laplacian of the extra stress tensor. Both methods are implemented in a finite element code and demonstrated in the solution of a viscoelastic fluid flow in a two-dimensional corrugated channel for a range of Weissenberg numbers. The numerical simulations have shown that this new temporal stress diffusion not only efficiently stabilizes numerical simulations, but also vanishes when the solution reaches a steady state. It is demonstrated that in contrast to the standard tensorial diffusion, the temporal artificial stress diffusion does not affect the final solution.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-04243S" target="_blank" >GA19-04243S: Partial differential equations in mechanics and thermodynamics of fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
2227-7390
Volume of the periodical
10
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
20
Pages from-to
404
UT code for WoS article
000755539700001
EID of the result in the Scopus database
2-s2.0-85123628621