Stability of strong solutions to the Navier-Stokes-Fourier system
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00524481" target="_blank" >RIV/67985840:_____/20:00524481 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1137/18M1223022" target="_blank" >https://doi.org/10.1137/18M1223022</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/18M1223022" target="_blank" >10.1137/18M1223022</a>
Alternative languages
Result language
angličtina
Original language name
Stability of strong solutions to the Navier-Stokes-Fourier system
Original language description
We identify a large class of objects dissipative measure-valued (DMV) solutions to the Navier-Stokes-Fourier system in which the strong solutions are stable. More precisely, a DMV solution coincides with the strong solution emanating from the same initial data as long as the latter exists. The DMV solutions are represented by parameterized families of measures satisfying certain compatibility conditions. They can be seen as an analogue to the dissipative measure-valued solutions introduced earlier in the context of the (inviscid) Euler system.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-05974S" target="_blank" >GA18-05974S: Oscillations and concentrations versus stability in the equations of mathematical fluid dynamics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Mathematical Analysis
ISSN
0036-1410
e-ISSN
—
Volume of the periodical
52
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
25
Pages from-to
1761-1785
UT code for WoS article
000546971100025
EID of the result in the Scopus database
2-s2.0-85084509742