Pseudo-dualizing complexes and pseudo-derived categories
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00524625" target="_blank" >RIV/67985840:_____/20:00524625 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4171/RSMUP/44" target="_blank" >http://dx.doi.org/10.4171/RSMUP/44</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/RSMUP/44" target="_blank" >10.4171/RSMUP/44</a>
Alternative languages
Result language
angličtina
Original language name
Pseudo-dualizing complexes and pseudo-derived categories
Original language description
The definition of a pseudo-dualizing complex is obtained from that of a dualizing complex by dropping the injective dimension condition, while retaining the finite generatedness and homothety isomorphism conditions. In the specific setting of a pair of associative rings, we show that the datum of a pseudo-dualizing complex induces a triangulated equivalence between a pseudo-coderived category and a pseudo-contraderived category. The latter terms mean triangulated categories standing 'in between' the conventional derived category and the coderived or the contraderived category. The constructions of these triangulated categories use appropriate versions of the Auslander and Bass classes of modules. The constructions of derived functors providing the triangulated equivalence are based on a generalization of a technique developed in our previous paper [45].
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Rendiconti del Seminario Matematico della Universita di Padova
ISSN
0041-8994
e-ISSN
—
Volume of the periodical
143
Issue of the periodical within the volume
June
Country of publishing house
IT - ITALY
Number of pages
73
Pages from-to
153-225
UT code for WoS article
000566776500007
EID of the result in the Scopus database
2-s2.0-85089689709