Frölicher–Nijenhuis bracket on manifolds with special holonomy
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00525270" target="_blank" >RIV/67985840:_____/20:00525270 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-1-0716-0577-6_8" target="_blank" >http://dx.doi.org/10.1007/978-1-0716-0577-6_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-1-0716-0577-6_8" target="_blank" >10.1007/978-1-0716-0577-6_8</a>
Alternative languages
Result language
angličtina
Original language name
Frölicher–Nijenhuis bracket on manifolds with special holonomy
Original language description
In this article, we summarize our recent results on the study of manifolds with special holonomy via the Frölicher–Nijenhuis bracket. This bracket enables us to define the Frölicher–Nijenhuis cohomologies which are analogues of the and the Dolbeault cohomologies in Kähler geometry, and assigns an -algebra to each associative submanifold. We provide several concrete computations of the Frölicher–Nijenhuis cohomology.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Lectures and Surveys on G2-Manifolds and Related Topics
ISBN
978-1-0716-0576-9
Number of pages of the result
15
Pages from-to
201-215
Number of pages of the book
382
Publisher name
Springer
Place of publication
New York
UT code for WoS chapter
—