All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Frölicher–Nijenhuis bracket on manifolds with special holonomy

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00525270" target="_blank" >RIV/67985840:_____/20:00525270 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-1-0716-0577-6_8" target="_blank" >http://dx.doi.org/10.1007/978-1-0716-0577-6_8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-1-0716-0577-6_8" target="_blank" >10.1007/978-1-0716-0577-6_8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Frölicher–Nijenhuis bracket on manifolds with special holonomy

  • Original language description

    In this article, we summarize our recent results on the study of manifolds with special holonomy via the Frölicher–Nijenhuis bracket. This bracket enables us to define the Frölicher–Nijenhuis cohomologies which are analogues of the and the Dolbeault cohomologies in Kähler geometry, and assigns an -algebra to each associative submanifold. We provide several concrete computations of the Frölicher–Nijenhuis cohomology.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Lectures and Surveys on G2-Manifolds and Related Topics

  • ISBN

    978-1-0716-0576-9

  • Number of pages of the result

    15

  • Pages from-to

    201-215

  • Number of pages of the book

    382

  • Publisher name

    Springer

  • Place of publication

    New York

  • UT code for WoS chapter