All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Moser inequalities in Gauss space

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00531324" target="_blank" >RIV/67985840:_____/20:00531324 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/20:10422197

  • Result on the web

    <a href="https://doi.org/10.1007/s00208-020-01956-z" target="_blank" >https://doi.org/10.1007/s00208-020-01956-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00208-020-01956-z" target="_blank" >10.1007/s00208-020-01956-z</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Moser inequalities in Gauss space

  • Original language description

    The sharp constants in a family of exponential Sobolev type inequalities in Gauss space are exhibited. They constitute the Gaussian analogues of the Moser inequality in the borderline case of the Sobolev embedding in the Euclidean space. Interestingly, the Gaussian results have features in common with the Euclidean ones, but also reveal marked diversities.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-00580S" target="_blank" >GA18-00580S: Function Spaces and Approximation</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Annalen

  • ISSN

    0025-5831

  • e-ISSN

  • Volume of the periodical

    377

  • Issue of the periodical within the volume

    3-4

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    48

  • Pages from-to

    1265-1312

  • UT code for WoS article

    000515688800001

  • EID of the result in the Scopus database

    2-s2.0-85078888810