What is the best viscous approximation to a rate-independent process?
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00531435" target="_blank" >RIV/67985840:_____/20:00531435 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21110/20:00346073
Result on the web
<a href="http://hdl.handle.net/11104/0310099" target="_blank" >http://hdl.handle.net/11104/0310099</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
What is the best viscous approximation to a rate-independent process?
Original language description
Viscous approximations of a rate-independent process with regulated inputs are considered with a general viscosity operator. It is shown that the limit as the viscosity coefficient tends to zero defines a continuous rate-independent input-output mapping with respect to the uniform topology in the space of regulated functions, the limits are, however, in general different for different viscosity operators. Examples show that if the viscosity operator is chosen independently of the energy potential, the limit jump trajectories may violate both the normality rule and the maximal dissipation principle.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Convex Analysis
ISSN
0944-6532
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
18
Pages from-to
1015-1032
UT code for WoS article
000550999600013
EID of the result in the Scopus database
2-s2.0-85076381458