σ -increasing positive solutions for systems of linear functional differential inequalities of non-Metzler type
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00534004" target="_blank" >RIV/67985840:_____/20:00534004 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00009-020-01639-8" target="_blank" >https://doi.org/10.1007/s00009-020-01639-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00009-020-01639-8" target="_blank" >10.1007/s00009-020-01639-8</a>
Alternative languages
Result language
angličtina
Original language name
σ -increasing positive solutions for systems of linear functional differential inequalities of non-Metzler type
Original language description
Consider the system of functional differential inequalities: D(σ)[u'(t)-ℓ(u)(t)]≥0fora.e.t∈[a,b],φ(u)≥0,where ℓ: C([a, b] : Rn) → L([a, b] : Rn) is a linear bounded operator, φ: C([a, b] : Rn) → Rn is a linear bounded functional, σ=(σi)i=1n, where σi∈ { - 1 , 1 } , and D(σ) = diag (σ1, ⋯ , σn). In the present paper, we establish conditions guaranteeing that every absolutely continuous vector-valued function u satisfying the above-mentioned inequalities admits also the inequalities u(t) ≥ 0 for t∈ [a, b] and D(σ) u'(t) ≥ 0 for a. e. t∈ [a, b].
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mediterranean Journal of Mathematics
ISSN
1660-5446
e-ISSN
—
Volume of the periodical
17
Issue of the periodical within the volume
6
Country of publishing house
CH - SWITZERLAND
Number of pages
20
Pages from-to
181
UT code for WoS article
000585863300001
EID of the result in the Scopus database
2-s2.0-85093068623