Periodic, permanent, and extinct solutions to population models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00557843" target="_blank" >RIV/67985840:_____/22:00557843 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jmaa.2022.126262" target="_blank" >https://doi.org/10.1016/j.jmaa.2022.126262</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2022.126262" target="_blank" >10.1016/j.jmaa.2022.126262</a>
Alternative languages
Result language
angličtina
Original language name
Periodic, permanent, and extinct solutions to population models
Original language description
The existence of a critical parameter λc>0 is proven for some population models, that splits the set of parameters into two parts where the existence, resp. nonexistence, of a positive periodic solution is guaranteed. Moreover, it is shown that in a quite wide class of population models, all the positive solutions are permanent, resp. extinct ones, provided there exists, resp. does not exist, a positive periodic solution. The results are based on a theoretical research dealing with a boundary value problem for functional differential equation with a real parameter u′(t)=ℓ(u)(t)+λF(u)(t)for a.e. t∈[a,b],h(u)=0, where ℓ and F:C([a,b],R)→L([a,b],R) are, respectively, linear and nonlinear operators, h:C([a,b],R)→R is a linear functional, and λ∈R is a real parameter. The results are illustrated by numerical simulations.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
1096-0813
Volume of the periodical
514
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
60
Pages from-to
126262
UT code for WoS article
000832060500013
EID of the result in the Scopus database
2-s2.0-85129037679