Epidemic dynamics via wavelet theory and machine learning with applications to Covid-19
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00536558" target="_blank" >RIV/67985840:_____/20:00536558 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.3390/biology9120477" target="_blank" >https://doi.org/10.3390/biology9120477</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/biology9120477" target="_blank" >10.3390/biology9120477</a>
Alternative languages
Result language
angličtina
Original language name
Epidemic dynamics via wavelet theory and machine learning with applications to Covid-19
Original language description
We introduce the concept of epidemic-fitted wavelets which comprise, in particular, as special cases the number I(t) of infectious individuals at time t in classical SIR models and their derivatives. We present a novel method for modelling epidemic dynamics by a model selection method using wavelet theory and, for its applications, machine learning-based curve fitting techniques. Our universal models are functions that are finite linear combinations of epidemic-fitted wavelets. We apply our method by modelling and forecasting, based on the Johns Hopkins University dataset, the spread of the current Covid-19 (SARS-CoV-2) epidemic in France, Germany, Italy and the Czech Republic, as well as in the US federal states New York and Florida.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GC18-01953J" target="_blank" >GC18-01953J: Geometric methods in statistical learning theory and applications</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
BIOLOGY-BASEL
ISSN
2079-7737
e-ISSN
—
Volume of the periodical
9
Issue of the periodical within the volume
12
Country of publishing house
CH - SWITZERLAND
Number of pages
21
Pages from-to
477
UT code for WoS article
000601813500001
EID of the result in the Scopus database
2-s2.0-85098171869