Lipschitz free p-spaces for 0 < p < 1
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00536811" target="_blank" >RIV/67985840:_____/20:00536811 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/20:10422223
Result on the web
<a href="https://doi.org/10.1007/s11856-020-2061-5" target="_blank" >https://doi.org/10.1007/s11856-020-2061-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11856-020-2061-5" target="_blank" >10.1007/s11856-020-2061-5</a>
Alternative languages
Result language
angličtina
Original language name
Lipschitz free p-spaces for 0 < p < 1
Original language description
This paper initiates the study of the structure of a new class of p-Banach spaces, 0 <p < 1, namely the Lipschitz free p-spaces (alternatively called Arens—Eells p-spaces) Fp(M) over p-metric spaces. We systematically develop the theory and show that some results hold as in the case of p = 1, while some new interesting phenomena appear in the case 0 <p < 1 which have no analogue in the classical setting. For the former, we, e.g., show that the Lipschitz free p-space over a separable ultrametric space is isomorphic to ℓp for all 0 <p ≤ 1. On the other hand, solving a problem by the first author and N. Kalton, there are metric spaces N⊂M such that the natural embedding from Fp(N) to Fp(M) is not an isometry.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Israel Journal of Mathematics
ISSN
0021-2172
e-ISSN
—
Volume of the periodical
240
Issue of the periodical within the volume
1
Country of publishing house
IL - THE STATE OF ISRAEL
Number of pages
34
Pages from-to
65-98
UT code for WoS article
000572292200008
EID of the result in the Scopus database
2-s2.0-85091453113