All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Lipschitz free p-spaces for 0 < p < 1

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00536811" target="_blank" >RIV/67985840:_____/20:00536811 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/20:10422223

  • Result on the web

    <a href="https://doi.org/10.1007/s11856-020-2061-5" target="_blank" >https://doi.org/10.1007/s11856-020-2061-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11856-020-2061-5" target="_blank" >10.1007/s11856-020-2061-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Lipschitz free p-spaces for 0 < p < 1

  • Original language description

    This paper initiates the study of the structure of a new class of p-Banach spaces, 0 <p < 1, namely the Lipschitz free p-spaces (alternatively called Arens—Eells p-spaces) Fp(M) over p-metric spaces. We systematically develop the theory and show that some results hold as in the case of p = 1, while some new interesting phenomena appear in the case 0 <p < 1 which have no analogue in the classical setting. For the former, we, e.g., show that the Lipschitz free p-space over a separable ultrametric space is isomorphic to ℓp for all 0 <p ≤ 1. On the other hand, solving a problem by the first author and N. Kalton, there are metric spaces N⊂M such that the natural embedding from Fp(N) to Fp(M) is not an isometry.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Israel Journal of Mathematics

  • ISSN

    0021-2172

  • e-ISSN

  • Volume of the periodical

    240

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    IL - THE STATE OF ISRAEL

  • Number of pages

    34

  • Pages from-to

    65-98

  • UT code for WoS article

    000572292200008

  • EID of the result in the Scopus database

    2-s2.0-85091453113