All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Structure of the Lipschitz free p-spaces Fp(Zd) and Fp(Rd) for 0 < p≤ 1

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00560291" target="_blank" >RIV/67985840:_____/22:00560291 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/22:10456414

  • Result on the web

    <a href="https://doi.org/10.1007/s13348-021-00322-9" target="_blank" >https://doi.org/10.1007/s13348-021-00322-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s13348-021-00322-9" target="_blank" >10.1007/s13348-021-00322-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Structure of the Lipschitz free p-spaces Fp(Zd) and Fp(Rd) for 0 < p≤ 1

  • Original language description

    Our aim in this article is to contribute to the theory of Lipschitz free p-spaces for 0 < p≤ 1 over the Euclidean spaces Rd and Zd. To that end, we show that Fp(Rd) admits a Schauder basis for every p∈ (0 , 1] , thus generalizing the corresponding result for the case p= 1 by Hájek and Pernecká (J Math Anal Appl 416(2):629–646, 2014, Theorem 3.1) and answering in the positive a question that was raised by Albiac et al. in (J Funct Anal 278(4):108354, 2020). Explicit formulas for the bases of Fp(Rd) and its isomorphic space Fp([0 , 1] d) are given. We also show that the well-known fact that F(Z) is isomorphic to ℓ1 does not extend to the case when p< 1 , that is, Fp(Z) is not isomorphic to ℓp when 0 < p< 1.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GX20-31529X" target="_blank" >GX20-31529X: Abstract convergence schemes and their complexities</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Collectanea Mathematica

  • ISSN

    0010-0757

  • e-ISSN

    2038-4815

  • Volume of the periodical

    73

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    ES - SPAIN

  • Number of pages

    21

  • Pages from-to

    337-357

  • UT code for WoS article

    000674538500001

  • EID of the result in the Scopus database

    2-s2.0-85110845016