All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Standard homogeneous C*-algebras as compact quantum metric spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00540451" target="_blank" >RIV/67985840:_____/20:00540451 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.4064/bc120-7" target="_blank" >http://dx.doi.org/10.4064/bc120-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4064/bc120-7" target="_blank" >10.4064/bc120-7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Standard homogeneous C*-algebras as compact quantum metric spaces

  • Original language description

    Given a compact metric space X and a unital C*-algebra A, we introduce a family of seminorms on the C*-algebra of continuous functions from X to A, denoted by C(X,A), induced by classical Lipschitz seminorms that produce compact quantum metrics in the sense of Rieffel if and only if A is finite-dimensional. As a consequence, we are able to isometrically embed X into the state space of C(X,A). Furthermore, we are able to extend convergence of compact metric spaces in the Gromov–Hausdorff distance to convergence of spaces of matrices over continuous functions on the associated compact metric spaces in Latrémolière’s Gromov–Hausdorff propinquity.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Quantum Dynamics

  • ISBN

    978-83-86806-46-1

  • Number of pages of the result

    30

  • Pages from-to

    81-110

  • Number of pages of the book

    265

  • Publisher name

    Polish Academy of Sciences. Institute of Mathematics

  • Place of publication

    Warszawa

  • UT code for WoS chapter