On positive periodic solutions to second-order differential equations with a sub-linear non-linearity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00531880" target="_blank" >RIV/67985840:_____/21:00531880 - isvavai.cz</a>
Alternative codes found
RIV/00216305:26210/21:PU137551
Result on the web
<a href="https://doi.org/10.1016/j.nonrwa.2020.103200" target="_blank" >https://doi.org/10.1016/j.nonrwa.2020.103200</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.nonrwa.2020.103200" target="_blank" >10.1016/j.nonrwa.2020.103200</a>
Alternative languages
Result language
angličtina
Original language name
On positive periodic solutions to second-order differential equations with a sub-linear non-linearity
Original language description
The paper studies the existence and uniqueness of a positive periodic solution to the equation u′′=p(t)u−q(t,u), where p∈L([0,ω]) and q:[0,ω]×R→R is a Carathéodory function sub-linear in the second argument. The general results are applied to some particular cases such as the equation u′′=p(t)u−h(t)sinu with p,h∈L([0,ω]). This equation appears when approximating non-linearities in the equation of motion of a certain non-linear oscillator, namely, a pendulum deflected towards the two charged bodies.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis: Real World Applications
ISSN
1468-1218
e-ISSN
1878-5719
Volume of the periodical
57
Issue of the periodical within the volume
February
Country of publishing house
GB - UNITED KINGDOM
Number of pages
24
Pages from-to
103200
UT code for WoS article
000573216300006
EID of the result in the Scopus database
2-s2.0-85089522482