All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Power bounded operators and the mean ergodic theorem for subsequences

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00532219" target="_blank" >RIV/67985840:_____/21:00532219 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jmaa.2020.124523" target="_blank" >https://doi.org/10.1016/j.jmaa.2020.124523</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2020.124523" target="_blank" >10.1016/j.jmaa.2020.124523</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Power bounded operators and the mean ergodic theorem for subsequences

  • Original language description

    Let T be a power bounded Hilbert space operator without unimodular eigenvalues. We show that the subsequential ergodic averages N−1∑n=1NTan converge in the strong operator topology for a wide range of sequences (an), including the integer part of most of subpolynomial Hardy functions. Moreover, we show that the weighted averages N−1∑n=1Ne2πig(n)Tan also converge for many reasonable functions g. In particular, we generalize the polynomial mean ergodic theorem for power bounded operators due to ter Elst and the second author [16] to real polynomials and polynomial weights.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GX20-31529X" target="_blank" >GX20-31529X: Abstract convergence schemes and their complexities</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Analysis and Applications

  • ISSN

    0022-247X

  • e-ISSN

    1096-0813

  • Volume of the periodical

    493

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    25

  • Pages from-to

    124523

  • UT code for WoS article

    000576820100003

  • EID of the result in the Scopus database

    2-s2.0-85089749741