Power bounded operators and the mean ergodic theorem for subsequences
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00532219" target="_blank" >RIV/67985840:_____/21:00532219 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jmaa.2020.124523" target="_blank" >https://doi.org/10.1016/j.jmaa.2020.124523</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2020.124523" target="_blank" >10.1016/j.jmaa.2020.124523</a>
Alternative languages
Result language
angličtina
Original language name
Power bounded operators and the mean ergodic theorem for subsequences
Original language description
Let T be a power bounded Hilbert space operator without unimodular eigenvalues. We show that the subsequential ergodic averages N−1∑n=1NTan converge in the strong operator topology for a wide range of sequences (an), including the integer part of most of subpolynomial Hardy functions. Moreover, we show that the weighted averages N−1∑n=1Ne2πig(n)Tan also converge for many reasonable functions g. In particular, we generalize the polynomial mean ergodic theorem for power bounded operators due to ter Elst and the second author [16] to real polynomials and polynomial weights.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX20-31529X" target="_blank" >GX20-31529X: Abstract convergence schemes and their complexities</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
1096-0813
Volume of the periodical
493
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
25
Pages from-to
124523
UT code for WoS article
000576820100003
EID of the result in the Scopus database
2-s2.0-85089749741