Definable coaisles over rings of weak global dimension at most one
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00535449" target="_blank" >RIV/67985840:_____/21:00535449 - isvavai.cz</a>
Result on the web
<a href="https://dx.doi.org/10.5565/PUBLMAT6512106" target="_blank" >https://dx.doi.org/10.5565/PUBLMAT6512106</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5565/PUBLMAT6512106" target="_blank" >10.5565/PUBLMAT6512106</a>
Alternative languages
Result language
angličtina
Original language name
Definable coaisles over rings of weak global dimension at most one
Original language description
In the setting of the unbounded derived category D(R) of a ring R of weak global dimension at most one we consider t-structures with a de nable coaisle. The t-structures among these which are stable (that is, the t-structures which consist of a pair of triangulated subcategories) are precisely the ones associated to a smashing localization of the derived category. In this way, our present results generalize those of [8] to the non-stable case. As in the stable case [8], we con ne for the most part to the commutative setting, and give a full classi cation of de nable coaisles in the localncase, that is, over valuation domains. It turns out that, unlike in the stable case of smashing subcategories, the de nable coaisles do not always arise from homological ring epimorphisms. We also consider a non-stable version of the Telescope Conjecture for t-structures and give a ring-theoretic characterization of the commutative rings of weak global dimension at most one for which it is satis ed.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Publicacions Matematiques
ISSN
0214-1493
e-ISSN
0214-1493
Volume of the periodical
65
Issue of the periodical within the volume
1
Country of publishing house
ES - SPAIN
Number of pages
77
Pages from-to
165-241
UT code for WoS article
000661536000006
EID of the result in the Scopus database
2-s2.0-85091070810