All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Smashing localizations of rings of weak global dimension at most one

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10369535" target="_blank" >RIV/00216208:11320/17:10369535 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.aim.2016.09.028" target="_blank" >http://dx.doi.org/10.1016/j.aim.2016.09.028</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aim.2016.09.028" target="_blank" >10.1016/j.aim.2016.09.028</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Smashing localizations of rings of weak global dimension at most one

  • Original language description

    We show for a ring R of weak global dimension at most one that there is a bijection between the smashing subcategories of its derived category and the equivalence classes of homological epimorphisms starting in R. If, moreover, R is commutative, we prove that the compactly generated localizing subcategories correspond precisely to flat epimorphisms. We also classify smashing localizations of the derived category of any valuation domain, and provide an easy criterion for the Telescope Conjecture (TC) for any commutative ring of weak global dimension at most one. As a consequence, we show that the TC holds for any commutative von Neumann regular ring R, and it holds precisely for those Prflfer domains which are strongly discrete.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in Mathematics

  • ISSN

    0001-8708

  • e-ISSN

  • Volume of the periodical

    2017

  • Issue of the periodical within the volume

    305

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    51

  • Pages from-to

    351-401

  • UT code for WoS article

    000406169200009

  • EID of the result in the Scopus database