Smashing localizations of rings of weak global dimension at most one
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10369535" target="_blank" >RIV/00216208:11320/17:10369535 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.aim.2016.09.028" target="_blank" >http://dx.doi.org/10.1016/j.aim.2016.09.028</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aim.2016.09.028" target="_blank" >10.1016/j.aim.2016.09.028</a>
Alternative languages
Result language
angličtina
Original language name
Smashing localizations of rings of weak global dimension at most one
Original language description
We show for a ring R of weak global dimension at most one that there is a bijection between the smashing subcategories of its derived category and the equivalence classes of homological epimorphisms starting in R. If, moreover, R is commutative, we prove that the compactly generated localizing subcategories correspond precisely to flat epimorphisms. We also classify smashing localizations of the derived category of any valuation domain, and provide an easy criterion for the Telescope Conjecture (TC) for any commutative ring of weak global dimension at most one. As a consequence, we show that the TC holds for any commutative von Neumann regular ring R, and it holds precisely for those Prflfer domains which are strongly discrete.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Mathematics
ISSN
0001-8708
e-ISSN
—
Volume of the periodical
2017
Issue of the periodical within the volume
305
Country of publishing house
US - UNITED STATES
Number of pages
51
Pages from-to
351-401
UT code for WoS article
000406169200009
EID of the result in the Scopus database
—