Easton's theorem for the tree property below ℵω
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00541938" target="_blank" >RIV/67985840:_____/21:00541938 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.apal.2021.102974" target="_blank" >https://doi.org/10.1016/j.apal.2021.102974</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apal.2021.102974" target="_blank" >10.1016/j.apal.2021.102974</a>
Alternative languages
Result language
angličtina
Original language name
Easton's theorem for the tree property below ℵω
Original language description
Starting with infinitely many supercompact cardinals, we show that the tree property at every cardinal ℵn, 1<n<ω, is consistent with an arbitrary continuum function below ℵω which satisfies 2ℵn>ℵn+1, n<ω. Thus the tree property has no provable effect on the continuum function below ℵω except for the restriction that the tree property at κ++ implies 2κ>κ+ for every infinite κ.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annals of Pure and Applied Logic
ISSN
0168-0072
e-ISSN
1873-2461
Volume of the periodical
172
Issue of the periodical within the volume
7
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
20
Pages from-to
102974
UT code for WoS article
000651906100005
EID of the result in the Scopus database
2-s2.0-85104068814