Computing oscillatory solutions of the Euler system via K-convergence
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00542579" target="_blank" >RIV/67985840:_____/21:00542579 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/21:10441203
Result on the web
<a href="https://doi.org/10.1142/S0218202521500123" target="_blank" >https://doi.org/10.1142/S0218202521500123</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218202521500123" target="_blank" >10.1142/S0218202521500123</a>
Alternative languages
Result language
angličtina
Original language name
Computing oscillatory solutions of the Euler system via K-convergence
Original language description
We develop a method to compute effectively the Young measures associated to sequences of numerical solutions of the compressible Euler system. Our approach is based on the concept of -convergence adapted to sequences of parameterized measures. The convergence is strong in space and time (a.e. pointwise or in certain Lq spaces) whereas the measures converge narrowly or in the Wasserstein distance to the corresponding limit.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-05974S" target="_blank" >GA18-05974S: Oscillations and concentrations versus stability in the equations of mathematical fluid dynamics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Models and Methods in Applied Sciences
ISSN
0218-2025
e-ISSN
1793-6314
Volume of the periodical
31
Issue of the periodical within the volume
3
Country of publishing house
SG - SINGAPORE
Number of pages
40
Pages from-to
537-576
UT code for WoS article
000651438800003
EID of the result in the Scopus database
2-s2.0-85102780776