Formally integrable complex structures on higher dimensional knot spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00544043" target="_blank" >RIV/67985840:_____/21:00544043 - isvavai.cz</a>
Result on the web
<a href="https://dx.doi.org/10.4310/JSG.2021.v19.n3.a1" target="_blank" >https://dx.doi.org/10.4310/JSG.2021.v19.n3.a1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4310/JSG.2021.v19.n3.a1" target="_blank" >10.4310/JSG.2021.v19.n3.a1</a>
Alternative languages
Result language
angličtina
Original language name
Formally integrable complex structures on higher dimensional knot spaces
Original language description
Let S be a compact oriented finite dimensional manifold and M a finite dimensional Riemannian manifold, let Immf(S,M) the space of all free immersions φ:S→M and let B+i,f(S,M) the quotient space Immf(S,M)/Diff+(S), where Diff+(S) denotes the group of orientation preserving diffeomorphisms of S. In this paper we prove that if M admits a parallel r-fold vector cross product χ∈Ωr(M,TM) and dimS=r−1 then B+i,f(S,M) is a formally Kähler manifold. This generalizes Brylinski’s, LeBrun’s and Verbitsky’s results for the case that S is a codimension 2 submanifold in M, and S=S1 or M is a torsion-free G2-manifold respectively.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Symplectic Geometry
ISSN
1527-5256
e-ISSN
1540-2347
Volume of the periodical
19
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
507-529
UT code for WoS article
000677432200001
EID of the result in the Scopus database
2-s2.0-85112686577