All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Formally integrable complex structures on higher dimensional knot spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00544043" target="_blank" >RIV/67985840:_____/21:00544043 - isvavai.cz</a>

  • Result on the web

    <a href="https://dx.doi.org/10.4310/JSG.2021.v19.n3.a1" target="_blank" >https://dx.doi.org/10.4310/JSG.2021.v19.n3.a1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4310/JSG.2021.v19.n3.a1" target="_blank" >10.4310/JSG.2021.v19.n3.a1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Formally integrable complex structures on higher dimensional knot spaces

  • Original language description

    Let S be a compact oriented finite dimensional manifold and M a finite dimensional Riemannian manifold, let Immf(S,M) the space of all free immersions φ:S→M and let B+i,f(S,M) the quotient space Immf(S,M)/Diff+(S), where Diff+(S) denotes the group of orientation preserving diffeomorphisms of S. In this paper we prove that if M admits a parallel r-fold vector cross product χ∈Ωr(M,TM) and dimS=r−1 then B+i,f(S,M) is a formally Kähler manifold. This generalizes Brylinski’s, LeBrun’s and Verbitsky’s results for the case that S is a codimension 2 submanifold in M, and S=S1 or M is a torsion-free G2-manifold respectively.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Symplectic Geometry

  • ISSN

    1527-5256

  • e-ISSN

    1540-2347

  • Volume of the periodical

    19

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    23

  • Pages from-to

    507-529

  • UT code for WoS article

    000677432200001

  • EID of the result in the Scopus database

    2-s2.0-85112686577