Shadows of Newton polytopes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00546776" target="_blank" >RIV/67985840:_____/21:00546776 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4230/LIPIcs.CCC.2021.9" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.CCC.2021.9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.CCC.2021.9" target="_blank" >10.4230/LIPIcs.CCC.2021.9</a>
Alternative languages
Result language
angličtina
Original language name
Shadows of Newton polytopes
Original language description
We define the shadow complexity of a polytope P as the maximum number of vertices in a linear projection of P to the plane. We describe connections to algebraic complexity and to parametrized optimization. We also provide several basic examples and constructions, and develop tools for bounding shadow complexity.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX19-27871X" target="_blank" >GX19-27871X: Efficient approximation algorithms and circuit complexity</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
36th Computational Complexity Conference (CCC 2021)
ISBN
978-3-95977-193-1
ISSN
1868-8969
e-ISSN
—
Number of pages
23
Pages from-to
9
Publisher name
Schloss Dagstuhl, Leibniz-Zentrum für Informatik
Place of publication
Dagstuhl
Event location
Toronto
Event date
Jul 20, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—