All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Left Bousfield localization and Eilenberg-Moore categories

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00547546" target="_blank" >RIV/67985840:_____/21:00547546 - isvavai.cz</a>

  • Result on the web

    <a href="https://dx.doi.org/10.4310/HHA.2021.v23.n2.a16" target="_blank" >https://dx.doi.org/10.4310/HHA.2021.v23.n2.a16</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4310/HHA.2021.v23.n2.a16" target="_blank" >10.4310/HHA.2021.v23.n2.a16</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Left Bousfield localization and Eilenberg-Moore categories

  • Original language description

    We prove the equivalence of several hypotheses that have appeared recently in the literature for studying left Bousfield localization and algebras over a monad. We find conditions so that there is a model structure for local algebras, so that localization preserves algebras, and so that localization lifts to the level of algebras. We include examples coming from the theory of colored operads, and applications to spaces, spectra, and chain complexes.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Homology, Homotopy and Applications

  • ISSN

    1532-0073

  • e-ISSN

    1532-0081

  • Volume of the periodical

    23

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    25

  • Pages from-to

    299-323

  • UT code for WoS article

    000707375800013

  • EID of the result in the Scopus database