Left Bousfield localization and Eilenberg-Moore categories
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00547546" target="_blank" >RIV/67985840:_____/21:00547546 - isvavai.cz</a>
Result on the web
<a href="https://dx.doi.org/10.4310/HHA.2021.v23.n2.a16" target="_blank" >https://dx.doi.org/10.4310/HHA.2021.v23.n2.a16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4310/HHA.2021.v23.n2.a16" target="_blank" >10.4310/HHA.2021.v23.n2.a16</a>
Alternative languages
Result language
angličtina
Original language name
Left Bousfield localization and Eilenberg-Moore categories
Original language description
We prove the equivalence of several hypotheses that have appeared recently in the literature for studying left Bousfield localization and algebras over a monad. We find conditions so that there is a model structure for local algebras, so that localization preserves algebras, and so that localization lifts to the level of algebras. We include examples coming from the theory of colored operads, and applications to spaces, spectra, and chain complexes.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Homology, Homotopy and Applications
ISSN
1532-0073
e-ISSN
1532-0081
Volume of the periodical
23
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
25
Pages from-to
299-323
UT code for WoS article
000707375800013
EID of the result in the Scopus database
—