Contramodules
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00555864" target="_blank" >RIV/67985840:_____/21:00555864 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.5802/cml.78" target="_blank" >https://doi.org/10.5802/cml.78</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5802/cml.78" target="_blank" >10.5802/cml.78</a>
Alternative languages
Result language
angličtina
Original language name
Contramodules
Original language description
Contramodules are module-like algebraic structures endowed with infinite summation (or, occasionally, integration) operations satisfying natural axioms. Introduced originally by Eilenberg and Moore in 1965 in the case of coalgebras over commutative rings, contramodules experience a small renaissance now after being all but forgotten for three decades between 1970-2000. Here we present a review of various definitions and results related to contramodules (drawing mostly from our monographs and preprints arXiv:0708.3398, arXiv:0905.2621, arXiv:1202.2697, arXiv:1209.2995, arXiv:1512.08119, arXiv:1710.02230, arXiv:1705.04960, arXiv:1808.00937) - including contramodules over corings, topological associative rings, topological Lie algebras and topological groups, semicontramodules over semialgebras, and a 'contra version' of the Bernstein-Gelfand-Gelfand category O. Several underived manifestations of the comodule-contramodule correspondence phenomenon are discussed.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-13778S" target="_blank" >GA20-13778S: Symmetries, dualities and approximations in derived algebraic geometry and representation theory</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Confluentes Mathematici
ISSN
1793-7442
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
2
Country of publishing house
SG - SINGAPORE
Number of pages
90
Pages from-to
93-182
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85128169325