All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Weak Fraïssé categories

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00552374" target="_blank" >RIV/67985840:_____/22:00552374 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.tac.mta.ca/tac/volumes/38/2/38-02.pdf" target="_blank" >http://www.tac.mta.ca/tac/volumes/38/2/38-02.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Weak Fraïssé categories

  • Original language description

    We develop the theory of weak Fraïssé categories, in which the crucial concept is the weak amalgamation property, discovered relatively recently in model theory. We show that, in a suitable framework, every weak Fraïssé category has its unique generic limit, a special object in a bigger category, characterized by a certain variant of injectivity. This significantly extends the present theory of Fraïssé limits.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GX20-31529X" target="_blank" >GX20-31529X: Abstract convergence schemes and their complexities</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Theory and Applications of Categories

  • ISSN

    1201-561X

  • e-ISSN

  • Volume of the periodical

    38

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CA - CANADA

  • Number of pages

    38

  • Pages from-to

    27-63

  • UT code for WoS article

    000743122600002

  • EID of the result in the Scopus database

    2-s2.0-85123406374