Weak Fraïssé categories
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00552374" target="_blank" >RIV/67985840:_____/22:00552374 - isvavai.cz</a>
Result on the web
<a href="http://www.tac.mta.ca/tac/volumes/38/2/38-02.pdf" target="_blank" >http://www.tac.mta.ca/tac/volumes/38/2/38-02.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Weak Fraïssé categories
Original language description
We develop the theory of weak Fraïssé categories, in which the crucial concept is the weak amalgamation property, discovered relatively recently in model theory. We show that, in a suitable framework, every weak Fraïssé category has its unique generic limit, a special object in a bigger category, characterized by a certain variant of injectivity. This significantly extends the present theory of Fraïssé limits.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX20-31529X" target="_blank" >GX20-31529X: Abstract convergence schemes and their complexities</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theory and Applications of Categories
ISSN
1201-561X
e-ISSN
—
Volume of the periodical
38
Issue of the periodical within the volume
2
Country of publishing house
CA - CANADA
Number of pages
38
Pages from-to
27-63
UT code for WoS article
000743122600002
EID of the result in the Scopus database
2-s2.0-85123406374