Numerical validation of a simple immersed boundary solver for branched channels simulations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00554640" target="_blank" >RIV/67985840:_____/22:00554640 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21220/22:00356592
Result on the web
<a href="http://dx.doi.org/10.14311/TPFM.2022.018" target="_blank" >http://dx.doi.org/10.14311/TPFM.2022.018</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/TPFM.2022.018" target="_blank" >10.14311/TPFM.2022.018</a>
Alternative languages
Result language
angličtina
Original language name
Numerical validation of a simple immersed boundary solver for branched channels simulations
Original language description
This contribution reports on an ongoing study of incompressible viscous fluid flow in two dimensional branched channels. A new finite difference solver was developed using a simple implementation of an immersed boundary method to represent the channel geometry. Numerical solutions obtained using this new solver are compared with outputs of an older finite volume code working on classical wall tted structured multiblock grid. Besides of the comparative evaluation of obtained solution, the aim is to verify whether the immersed boundary method is suitable (accurate and e cient enough) for simulations of flow in channels with complicated geometry where the the grid generation might be challenging.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of Topical Problems of Fluid Mechanics 2022
ISBN
978-80-87012-77-2
ISSN
2336-5781
e-ISSN
—
Number of pages
8
Pages from-to
127-134
Publisher name
Institute of Thermomechanics AS CR
Place of publication
Prague
Event location
Prague
Event date
Feb 16, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—