All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Validation of numerical simulations of a simple immersed boundary solver for fluid flow in branching channels

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00571092" target="_blank" >RIV/67985840:_____/23:00571092 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21220/23:00371948

  • Result on the web

    <a href="https://dx.doi.org/10.21136/panm.2022.09" target="_blank" >https://dx.doi.org/10.21136/panm.2022.09</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21136/panm.2022.09" target="_blank" >10.21136/panm.2022.09</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Validation of numerical simulations of a simple immersed boundary solver for fluid flow in branching channels

  • Original language description

    This work deals with the flow of incompressible viscous fluids in a two-dimensional branching channel. Using the immersed boundary method, a new finite difference solver was developed to interpret the channel geometry. The numerical results obtained by this new solver are compared with the numerical simulations of the older finite volume method code and with the results obtained with OpenFOAM. The aim of this work is to verify whether the immersed boundary method is suitable for fluid flow in channels with more complex geometries with difficult grid generation.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Programs and Algorithms of Numerical Mathematics 21

  • ISBN

    978-80-85823-73-8

  • ISSN

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    85-96

  • Publisher name

    Institute of Mathematics CAS

  • Place of publication

    Prague

  • Event location

    Jablonec nad Nisou

  • Event date

    Jun 19, 2022

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article