All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Two remarks on graph norms

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00555479" target="_blank" >RIV/67985840:_____/22:00555479 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00454-021-00280-w" target="_blank" >https://doi.org/10.1007/s00454-021-00280-w</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00454-021-00280-w" target="_blank" >10.1007/s00454-021-00280-w</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Two remarks on graph norms

  • Original language description

    For a graph H, its homomorphism density in graphs naturally extends to the space of two-variable symmetric functions W in Lp, p≥ e(H) , denoted by t(H, W). One may then define corresponding functionals ‖W‖H:=|t(H,W)|1/e(H) and ‖W‖r(H):=t(H,|W|)1/e(H), and say that H is (semi-)norming if ‖·‖H is a (semi-)norm and that H is weakly norming if ‖·‖r(H) is a norm. We obtain two results that contribute to the theory of (weakly) norming graphs. Firstly, answering a question of Hatami, who estimated the modulus of convexity and smoothness of ‖·‖H, we prove that ‖·‖r(H) is neither uniformly convex nor uniformly smooth, provided that H is weakly norming. Secondly, we prove that every graph H without isolated vertices is (weakly) norming if and only if each component is an isomorphic copy of a (weakly) norming graph. This strong factorisation result allows us to assume connectivity of H when studying graph norms. In particular, we correct a negligence in the original statement of the aforementioned theorem by Hatami.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ18-01472Y" target="_blank" >GJ18-01472Y: Graph limits and inhomogeneous random graphs</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Discrete & Computational Geometry

  • ISSN

    0179-5376

  • e-ISSN

    1432-0444

  • Volume of the periodical

    67

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    919-929

  • UT code for WoS article

    000618566600002

  • EID of the result in the Scopus database

    2-s2.0-85100914327