Generic Frechet Differentiability on Asplund Spaces via A.E. Strict Differentiability on Many Lines
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10127167" target="_blank" >RIV/00216208:11320/12:10127167 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Generic Frechet Differentiability on Asplund Spaces via A.E. Strict Differentiability on Many Lines
Original language description
We prove that a locally Lipschitz function on an open subset G of an Asplund space X, whose restrictions to "many lines" are essentially smooth (i.e., almost everywhere strictly differentiable), is generically Frechet differentiable on X. In this way weobtain new proofs of known Frechet differentiability properties of approximately convex functions, Lipschitz regular functions, saddle (or biconvex) Lipschitz functions, and essentially smooth functions (in the sense of Borwein and Moors), and also somenew differentiability results (e.g., for partially DC functions). We show that classes of functions S-e(g)(G) and R-e(g)(G) (defined via linear essential smoothness) are respectively larger than classes S-e(G) (of essentially smooth functions) and R-e(G)studied by Borwein and Moors, and have also nice properties. In particular, we prove that members of S-e(g)(G) are uniquely determined by their Clarke subdifferentials. We also show the inclusion S-e(G) subset of R-e(G) for Borwein-Moors
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0067" target="_blank" >GA201/09/0067: Theory of real functions and descriptive set theory II</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Convex Analysis
ISSN
0944-6532
e-ISSN
—
Volume of the periodical
19
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
26
Pages from-to
23-48
UT code for WoS article
000301551300002
EID of the result in the Scopus database
—