On the Differentiability of Saddle and Biconvex Functions and Operators
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422014" target="_blank" >RIV/00216208:11320/20:10422014 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=LdUcgreoZL" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=LdUcgreoZL</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the Differentiability of Saddle and Biconvex Functions and Operators
Original language description
We strengthen and generalize results of J. M. Borwein [Partially monotone operators and the generic differentiability of convex-concave and biconvex mappings, Israel J. Math. 54 (1986) 42-50] and of A. Ioffe and R. E. Lucchetti [Typical convex program is very well posed, Math. Program. 104 (2005) 483-499] on Frechet and Gateaux differentiability of saddle and biconvex functions (and operators). For example, we prove that in many cases (also in some cases which were not considered before) these functions (and operators) are Frechet differentiable except for a G-null, s-lower porous set. Moreover, we prove these results for more general "partially convex (up or down)" functions and operators defined on the product of n Banach spaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-11058S" target="_blank" >GA18-11058S: Generalized convexity in geometry and analysis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Convex Analysis
ISSN
0944-6532
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
2
Country of publishing house
DE - GERMANY
Number of pages
27
Pages from-to
705-731
UT code for WoS article
000548355600015
EID of the result in the Scopus database
2-s2.0-85076375069