On differentiability of convex operators
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10189658" target="_blank" >RIV/00216208:11320/13:10189658 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jmaa.2012.12.073" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2012.12.073</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2012.12.073" target="_blank" >10.1016/j.jmaa.2012.12.073</a>
Alternative languages
Result language
angličtina
Original language name
On differentiability of convex operators
Original language description
The main known results on differentiability of continuous convex operators f from a Banach space X to an ordered Banach space Y are due to J.M. Borwein and N.K. Kirov. Our aim is to prove some "supergeneric" results, i.e., to show that, sometimes, the set of Gateaux or Frechet nondifferentiability points is not only a first-category set, but also smaller in a stronger sense. For example, we prove that if Y is countably Daniell and the space L(X, Y) of bounded linear operators is separable, then each continuous convex operator f:X -> Y is Frechet differentiable except for a Gamma-null angle-small set. Some applications of such supergeneric results are shown.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
402
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
12-22
UT code for WoS article
000315836900002
EID of the result in the Scopus database
—