On quantitative Gelfand-Phillips property and Phillips property
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00559727" target="_blank" >RIV/67985840:_____/22:00559727 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jmaa.2022.126532" target="_blank" >https://doi.org/10.1016/j.jmaa.2022.126532</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2022.126532" target="_blank" >10.1016/j.jmaa.2022.126532</a>
Alternative languages
Result language
angličtina
Original language name
On quantitative Gelfand-Phillips property and Phillips property
Original language description
Possible quantifications of well-known relationships among four classes of sets-relatively norm compact, limited, relatively weakly compact and weakly precompact ones, are investigated. We introduce and investigate quantitative versions of the Gelfand-Phillips property. As applications, we quantify the Phillips property and estimate possible values of the quantities measuring the property. Finally, we prove that c0 enjoys a quantitative version of the Phillips property.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
1096-0813
Volume of the periodical
516
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
19
Pages from-to
126532
UT code for WoS article
000911193700014
EID of the result in the Scopus database
2-s2.0-85135016211