All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Projective covers of flat contramodules

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00565896" target="_blank" >RIV/67985840:_____/22:00565896 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/22:10452390

  • Result on the web

    <a href="https://doi.org/10.1093/imrn/rnab202" target="_blank" >https://doi.org/10.1093/imrn/rnab202</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/imrn/rnab202" target="_blank" >10.1093/imrn/rnab202</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Projective covers of flat contramodules

  • Original language description

    We show that a direct limit of projective contramodules (over a right linear topological ring) is projective if it has a projective cover. A similar result is obtained for infinity-strictly flat contramodules of projective dimension not exceeding 1, using an argument based on the notion of the topological Jacobson radical. Covers and precovers of direct limits of more general classes of objects, both in abelian categories with exact and with nonexact direct limits, are also discussed, with an eye towards the Enochs conjecture about covers and direct limits, using locally split (mono)morphisms as the main technique. In particular, we offer a simple elementary proof of the Enochs conjecture for the left class of an n-tilting cotorsion pair in an abelian category with exact direct limits.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-23112S" target="_blank" >GA17-23112S: Structure theory for representations of algebras (localization and tilting theory)</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Mathematics Research Notices

  • ISSN

    1073-7928

  • e-ISSN

    1687-0247

  • Volume of the periodical

    2022

  • Issue of the periodical within the volume

    24

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    38

  • Pages from-to

    19527-19564

  • UT code for WoS article

    000790069800001

  • EID of the result in the Scopus database

    2-s2.0-85118708770