All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Derivation of the inviscid compressible Primitive Equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00565900" target="_blank" >RIV/67985840:_____/23:00565900 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.aml.2022.108534" target="_blank" >https://doi.org/10.1016/j.aml.2022.108534</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aml.2022.108534" target="_blank" >10.1016/j.aml.2022.108534</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Derivation of the inviscid compressible Primitive Equations

  • Original language description

    Primitive Equations (PE) are an important model which is widely used in the geophysical research and the mathematical analysis. In the previous results, people derive PE from the Navier–Stokes or the Euler system by an asymptotic analysis or a numerical approximation. Here, we give a rigorous mathematical derivation of inviscid compressible Primitive Equations from the Euler system in a periodic channel, utilizing the relative entropy inequality.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA22-01591S" target="_blank" >GA22-01591S: Mathematical theory and numerical analysis for equations of viscous newtonian compressible fluids</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Mathematics Letters

  • ISSN

    0893-9659

  • e-ISSN

    1873-5452

  • Volume of the periodical

    139

  • Issue of the periodical within the volume

    May

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    108534

  • UT code for WoS article

    000912485700001

  • EID of the result in the Scopus database

    2-s2.0-85144447723