Derivation of the inviscid compressible Primitive Equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00565900" target="_blank" >RIV/67985840:_____/23:00565900 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.aml.2022.108534" target="_blank" >https://doi.org/10.1016/j.aml.2022.108534</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aml.2022.108534" target="_blank" >10.1016/j.aml.2022.108534</a>
Alternative languages
Result language
angličtina
Original language name
Derivation of the inviscid compressible Primitive Equations
Original language description
Primitive Equations (PE) are an important model which is widely used in the geophysical research and the mathematical analysis. In the previous results, people derive PE from the Navier–Stokes or the Euler system by an asymptotic analysis or a numerical approximation. Here, we give a rigorous mathematical derivation of inviscid compressible Primitive Equations from the Euler system in a periodic channel, utilizing the relative entropy inequality.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA22-01591S" target="_blank" >GA22-01591S: Mathematical theory and numerical analysis for equations of viscous newtonian compressible fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Mathematics Letters
ISSN
0893-9659
e-ISSN
1873-5452
Volume of the periodical
139
Issue of the periodical within the volume
May
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
108534
UT code for WoS article
000912485700001
EID of the result in the Scopus database
2-s2.0-85144447723