The Gauss-Green theorem for bounded vector fields with divergence measure on sets of finite perimeter
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00570780" target="_blank" >RIV/67985840:_____/23:00570780 - isvavai.cz</a>
Result on the web
<a href="https://dx.doi.org/10.1512/iumj.2023.72.9407" target="_blank" >https://dx.doi.org/10.1512/iumj.2023.72.9407</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1512/iumj.2023.72.9407" target="_blank" >10.1512/iumj.2023.72.9407</a>
Alternative languages
Result language
angličtina
Original language name
The Gauss-Green theorem for bounded vector fields with divergence measure on sets of finite perimeter
Original language description
A bounded divergence measure field is a bounded measurable function q = (q1, . . ., qn) on Rn whose weak divergence is a finite signed measure. The Gauss-Green theorem for this class of fields on sets of finite perimeter was established independently by Chen & Torres and the present author in 2005. To emphasize the essentially simple nature of this result, the original proof is here outlined, with some amendments. In addition, future developments are briefly recapitulated together with some remarks on the later proof by Chen, Torres, & Ziemer.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Indiana University Mathematics Journal
ISSN
0022-2518
e-ISSN
1943-5258
Volume of the periodical
72
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
29-42
UT code for WoS article
001056947600002
EID of the result in the Scopus database
2-s2.0-85151041420