All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On isometries and Tingley’s problem for the spaces T[θ,Sα], 1⩽α<ω1

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00574194" target="_blank" >RIV/67985840:_____/23:00574194 - isvavai.cz</a>

  • Result on the web

    <a href="https://dx.doi.org/10.4064/sm230505-4-9" target="_blank" >https://dx.doi.org/10.4064/sm230505-4-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4064/sm230505-4-9" target="_blank" >10.4064/sm230505-4-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On isometries and Tingley’s problem for the spaces T[θ,Sα], 1⩽α<ω1

  • Original language description

    We extend the existing results on surjective isometries of unit spheres in the Tsirelson space T[1/2,S1] to the class T[θ,Sα] for any integer θ─1≥2 and 1⩽α<ω1, where Sα denotes the Schreier family of order α. This positively answers Tingley’s problem for these spaces, which asks whether every surjective isometry between unit spheres can be extended to a surjective linear isometry of the entire space.nFurthermore, we improve the result stating that every linear isometry on T[θ,S1] (θ∈(0,1/2]) is determined by a permutation of the first ⌈θ─1⌉ elements of the canonical unit basis, followed by a possible sign change of the corresponding coordinates and a sign change of the remaining coordinates. Specifically, we prove that only the first ⌊θ─1⌋ elements can be permuted. This enables us to establish a sufficient condition for being a linear isometry in these spaces.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GF20-22230L" target="_blank" >GF20-22230L: Banach spaces of continuous and Lipschitz functions</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Studia mathematica

  • ISSN

    0039-3223

  • e-ISSN

    1730-6337

  • Volume of the periodical

    273

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    PL - POLAND

  • Number of pages

    15

  • Pages from-to

    285-299

  • UT code for WoS article

    001110612100001

  • EID of the result in the Scopus database

    2-s2.0-85180337821