All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Conditions for the difference set of a central Cantor set to be a Cantorval

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00574268" target="_blank" >RIV/67985840:_____/23:00574268 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00025-023-01940-4" target="_blank" >https://doi.org/10.1007/s00025-023-01940-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00025-023-01940-4" target="_blank" >10.1007/s00025-023-01940-4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Conditions for the difference set of a central Cantor set to be a Cantorval

  • Original language description

    Let C(λ) ⊂ [0 , 1] denote the central Cantor set generated by a sequence λ=(λn)∈(0,12)N . By the known trichotomy, the difference set C(λ) - C(λ) of C(λ) is one of three possible sets: a finite union of closed intervals, a Cantor set, or a Cantorval. Our main result describes effective conditions for (λn) which guarantee that C(λ) - C(λ) is a Cantorval. We show that these conditions can be expressed in several equivalent forms. Under additional assumptions, the measure of the Cantorval C(λ) - C(λ) is established. We give an application of the proved theorems for the achievement sets of some fast convergent series.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GF20-22230L" target="_blank" >GF20-22230L: Banach spaces of continuous and Lipschitz functions</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Results in Mathematics

  • ISSN

    1422-6383

  • e-ISSN

    1420-9012

  • Volume of the periodical

    78

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    26

  • Pages from-to

    166

  • UT code for WoS article

    001018450300001

  • EID of the result in the Scopus database

    2-s2.0-85162863936