Conditions for the difference set of a central Cantor set to be a Cantorval
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00574268" target="_blank" >RIV/67985840:_____/23:00574268 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00025-023-01940-4" target="_blank" >https://doi.org/10.1007/s00025-023-01940-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00025-023-01940-4" target="_blank" >10.1007/s00025-023-01940-4</a>
Alternative languages
Result language
angličtina
Original language name
Conditions for the difference set of a central Cantor set to be a Cantorval
Original language description
Let C(λ) ⊂ [0 , 1] denote the central Cantor set generated by a sequence λ=(λn)∈(0,12)N . By the known trichotomy, the difference set C(λ) - C(λ) of C(λ) is one of three possible sets: a finite union of closed intervals, a Cantor set, or a Cantorval. Our main result describes effective conditions for (λn) which guarantee that C(λ) - C(λ) is a Cantorval. We show that these conditions can be expressed in several equivalent forms. Under additional assumptions, the measure of the Cantorval C(λ) - C(λ) is established. We give an application of the proved theorems for the achievement sets of some fast convergent series.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF20-22230L" target="_blank" >GF20-22230L: Banach spaces of continuous and Lipschitz functions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Results in Mathematics
ISSN
1422-6383
e-ISSN
1420-9012
Volume of the periodical
78
Issue of the periodical within the volume
5
Country of publishing house
DE - GERMANY
Number of pages
26
Pages from-to
166
UT code for WoS article
001018450300001
EID of the result in the Scopus database
2-s2.0-85162863936