A Cantor set in the plane that is not $sigma$-monotone
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F11%3A00187540" target="_blank" >RIV/68407700:21110/11:00187540 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A Cantor set in the plane that is not $sigma$-monotone
Original language description
A metric space $(X,d)$ is \emph{monotone} if there is a linear order $<$ on $X$ and a constant $c$ such that $d(x,y)\leq c\,d(x,z)$ for all $x<y<z$ in $X$, and \si monotone if it is a countable union of monotone subspaces. A planar set homeomorphic to the Cantor set that is not \si monotone is constructed and investigated. It follows that there is a metric on a Cantor set that is not \si monotone.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fundamenta Mathematicae
ISSN
0016-2736
e-ISSN
—
Volume of the periodical
213
Issue of the periodical within the volume
—
Country of publishing house
PL - POLAND
Number of pages
12
Pages from-to
221-232
UT code for WoS article
000296298400003
EID of the result in the Scopus database
—