All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Cantor set in the plane that is not $sigma$-monotone

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F11%3A00187540" target="_blank" >RIV/68407700:21110/11:00187540 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Cantor set in the plane that is not $sigma$-monotone

  • Original language description

    A metric space $(X,d)$ is \emph{monotone} if there is a linear order $<$ on $X$ and a constant $c$ such that $d(x,y)\leq c\,d(x,z)$ for all $x<y<z$ in $X$, and \si monotone if it is a countable union of monotone subspaces. A planar set homeomorphic to the Cantor set that is not \si monotone is constructed and investigated. It follows that there is a metric on a Cantor set that is not \si monotone.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Fundamenta Mathematicae

  • ISSN

    0016-2736

  • e-ISSN

  • Volume of the periodical

    213

  • Issue of the periodical within the volume

  • Country of publishing house

    PL - POLAND

  • Number of pages

    12

  • Pages from-to

    221-232

  • UT code for WoS article

    000296298400003

  • EID of the result in the Scopus database