PROPERTIES OF FUNCTIONS WITH MONOTONE GRAPHS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10283067" target="_blank" >RIV/00216208:11320/14:10283067 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21110/14:00242143
Result on the web
<a href="http://dx.doi.org/10.1007/s10474-013-0367-z" target="_blank" >http://dx.doi.org/10.1007/s10474-013-0367-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10474-013-0367-z" target="_blank" >10.1007/s10474-013-0367-z</a>
Alternative languages
Result language
angličtina
Original language name
PROPERTIES OF FUNCTIONS WITH MONOTONE GRAPHS
Original language description
A metric space (X,d) is monotone if there is a linear order < on X and a constant c > 0 such that d(x,y)a parts per thousand broken vertical bar cd(x,z) for all x < y < zaX. Properties of continuous functions with monotone graph (considered as a planar set) are investigated. It is shown, for example, that such a function can be almost nowhere differentiable, but must be differentiable at a dense set, and that the Hausdorff dimension of the graph of such a function is 1.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Mathematica Hungarica
ISSN
0236-5294
e-ISSN
—
Volume of the periodical
142
Issue of the periodical within the volume
1
Country of publishing house
HU - HUNGARY
Number of pages
30
Pages from-to
1-30
UT code for WoS article
000330806700001
EID of the result in the Scopus database
—