New lower bounds against homogeneous non-commutative circuits
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00575139" target="_blank" >RIV/67985840:_____/23:00575139 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4230/LIPIcs.CCC.2023.13" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.CCC.2023.13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.CCC.2023.13" target="_blank" >10.4230/LIPIcs.CCC.2023.13</a>
Alternative languages
Result language
angličtina
Original language name
New lower bounds against homogeneous non-commutative circuits
Original language description
We give several new lower bounds on size of homogeneous non-commutative circuits. We present an explicit homogeneous bivariate polynomial of degree d which requires homogeneous non-commutative circuit of size Ω(d/log d). For an n-variate polynomial with n > 1, the result can be improved to Ω(nd), if d ≤ n, or Ω(ndloglognd), if d ≥ n. Under the same assumptions, we also give a quadratic lower bound for the ordered version of the central symmetric polynomial.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX19-27871X" target="_blank" >GX19-27871X: Efficient approximation algorithms and circuit complexity</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
38th Computational Complexity Conference (CCC 2023)
ISBN
978-3-95977-282-2
ISSN
1868-8969
e-ISSN
—
Number of pages
10
Pages from-to
13
Publisher name
Schloss Dagstuhl, Leibniz-Zentrum für Informatik
Place of publication
Dagstuhl
Event location
Warwick
Event date
Jul 17, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—