Shadows of Newton polytopes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00577240" target="_blank" >RIV/67985840:_____/23:00577240 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s11856-023-2510-z" target="_blank" >https://doi.org/10.1007/s11856-023-2510-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11856-023-2510-z" target="_blank" >10.1007/s11856-023-2510-z</a>
Alternative languages
Result language
angličtina
Original language name
Shadows of Newton polytopes
Original language description
We define the shadow complexity of a polytope P as the maximum number of vertices in a linear projection of P to the plane. We describe connections to algebraic complexity and to parametrized optimization. We also provide several basic examples and constructions, and develop tools for bounding shadow complexity.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX19-27871X" target="_blank" >GX19-27871X: Efficient approximation algorithms and circuit complexity</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Israel Journal of Mathematics
ISSN
0021-2172
e-ISSN
1565-8511
Volume of the periodical
256
Issue of the periodical within the volume
1
Country of publishing house
IL - THE STATE OF ISRAEL
Number of pages
33
Pages from-to
311-343
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85173716859