All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cosimplicial monoids and deformation theory of tensor categories

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00577958" target="_blank" >RIV/67985840:_____/23:00577958 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/23:10474461

  • Result on the web

    <a href="https://doi.org/10.4171/jncg/512" target="_blank" >https://doi.org/10.4171/jncg/512</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4171/JNCG/512" target="_blank" >10.4171/JNCG/512</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cosimplicial monoids and deformation theory of tensor categories

  • Original language description

    We introduce the notion of n-commutativity (0 ≤ n ≤ ∞) for cosimplicial monoids in a symmetric monoidal category V, where n = 0 corresponds to just cosimplicial monoids in V, while n=∞ corresponds to commutative cosimplicial monoids. When V has a monoidal model structure, we endow (under some mild technical conditions) the total object of an n-cosimplicial monoid with a natural and very explicit En+1-algebra structure. Our main applications are to the deformation theory of tensor categories and tensor functors.We show that the deformation complex of a tensor functor is a total complex of a 1-commutative cosimplicial monoid and, hence, has an E2-algebra structure similar to the E2-structure on Hochschild complex of an associative algebra provided by Deligne’s conjecture. We further demonstrate that the deformation complex of a tensor category is the total complex of a 2-commutative cosimplicial monoid and, therefore, is naturally an E3-algebra. We make these structures very explicit through a language of Delannoy paths and their noncommutative liftings. We investigate how these structures manifest themselves in concrete examples.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopy and Homology Methods and Tools Related to Mathematical Physics</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Noncommutative Geometry

  • ISSN

    1661-6952

  • e-ISSN

    1661-6960

  • Volume of the periodical

    17

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    63

  • Pages from-to

    1167-1229

  • UT code for WoS article

    001108695100007

  • EID of the result in the Scopus database

    2-s2.0-85175016218