On the motion of a pendulum with a cavity filled with a compressible fluid
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00578454" target="_blank" >RIV/67985840:_____/23:00578454 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1063/5.0143910" target="_blank" >https://doi.org/10.1063/5.0143910</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0143910" target="_blank" >10.1063/5.0143910</a>
Alternative languages
Result language
angličtina
Original language name
On the motion of a pendulum with a cavity filled with a compressible fluid
Original language description
We study the motion of the coupled system, S , constituted by a physical pendulum, B , with an interior cavity entirely filled with a viscous, compressible fluid, F . The system is constrained to rotate about a horizontal axis. The presence of the fluid may strongly affect the motion of B . In fact, we prove that, under appropriate assumptions, the fluid acts as a damper, namely, S must eventually reach a rest-state. Such a state is characterized by a suitable time-independent density distribution of F and a corresponding equilibrium position of the center of mass of S . These results are proved in the very general class of weak solutions and do not require any restriction on the initial data, other than having a finite energy. We complement our findings with some numerical tests. The latter show, among other things, the interesting property that “large” compressibility favors the damping effect, since it drastically reduces the time that S takes to go to rest.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA22-01591S" target="_blank" >GA22-01591S: Mathematical theory and numerical analysis for equations of viscous newtonian compressible fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
1089-7658
Volume of the periodical
64
Issue of the periodical within the volume
11
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
111501
UT code for WoS article
001097473500007
EID of the result in the Scopus database
2-s2.0-85176123436