Category-colored operads, internal operads, and Markl O-operads
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00578470" target="_blank" >RIV/67985840:_____/23:00578470 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/23:00132345
Result on the web
<a href="http://www.tac.mta.ca/tac//volumes/39/30/39-30.pdf" target="_blank" >http://www.tac.mta.ca/tac//volumes/39/30/39-30.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Category-colored operads, internal operads, and Markl O-operads
Original language description
We present a Markl-style de nition of operads colored by a small category. In the presence of a unit these are equivalent to substitudes of Day and Street. We show that operads colored by a category are internal algebras of a certain categorical operad of functors. We describe a groupoid-colored quadratic binary operad, whose algebras are non-unital Markl operads in the context of operadic categories. As a by-product we describe the free internal operad construction.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theory and Applications of Categories
ISSN
1201-561X
e-ISSN
—
Volume of the periodical
39
Issue of the periodical within the volume
30
Country of publishing house
CA - CANADA
Number of pages
43
Pages from-to
874-915
UT code for WoS article
001126060400001
EID of the result in the Scopus database
2-s2.0-85176940374