Holmstedt's formula for the K-functional: the limit case θ0=θ1
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00579223" target="_blank" >RIV/67985840:_____/23:00579223 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1002/mana.202200440" target="_blank" >https://doi.org/10.1002/mana.202200440</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.202200440" target="_blank" >10.1002/mana.202200440</a>
Alternative languages
Result language
angličtina
Original language name
Holmstedt's formula for the K-functional: the limit case θ0=θ1
Original language description
We consider K-interpolation spaces involving slowly varying functions, and derive necessary and sufficient conditions for a Holmstedt-type formula to be held in the limiting case & theta,0=& theta,1 & ISIN,{0,1}$theta _0=theta _1in lbrace 0,1rbrace$. We also study the case & theta,0=& theta,1 & ISIN,(0,1)$theta _0=theta _1in (0,1)$. Applications are given to Lorentz-Karamata spaces, generalized gamma spaces, and Besov spaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA23-04720S" target="_blank" >GA23-04720S: Fine properties of functions, operators and function spaces</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
1522-2616
Volume of the periodical
296
Issue of the periodical within the volume
12
Country of publishing house
DE - GERMANY
Number of pages
19
Pages from-to
5474-5492
UT code for WoS article
001022752300001
EID of the result in the Scopus database
2-s2.0-85164310096